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Abstract 

Previous results which exhibit the impossibility of combining internal and space-time 
symmetries are reanalysed. Starting with McGlinn's (1964) work, where this trivial 
coupling appears as a direct product of these symmetries, it is shown that, by suitable 
generalisations such as the use of the framework of group extensions, and by the introduc- 
tion of a new quantal observable, i.e. a 'mass-breaking operator', one can prove the 
existence of a non-trivial coupling scheme which admits mass splitting for the members 
of some super-multiplet. This leads to a new classification scheme for elementary particles. 
Contrary to the conventional classification models, where the choice of the underlying 
symmetry group does not emerge directly from the comparison of theoretical predictions 
with the experimental data, our scheme admits the possibility of determining the relevant 
symmetry from the mass spectrum. 

1. Introduction 

The aim of  this article is to reappraise McGlinn's Theorem (McGlinn, 
1964) as well as some subsequent works, which afforded negative results 
with regard to the coupling of space-time and the so-called internal 
symmetries. We shall analyse in particular what kind of  ingredients, viz. 
modifications of  the aforementioned works, which refer to semi-simple or 
simple symmetries like SU(n), are required in order to yield a non-trivial 
coupling scheme. That is, we shall analyse in Section 3 which class of 
'higher' symmetries provides a grouping of  a given set of  particles and admits 
at the same time a solution of  the problem of combining with relativistic 
invariance in a non-trivial way. Otherwise stated: We tackle the problem of 
whether there exist such non-trivial couplings of  space-time symmetry 
{(a, A)} and 'internal symmetries' at all and how these symmetries are then 
related to each other in some suitable framework. 
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2. Previous Results on Trivial Couplings o f  Internal and 
Space-Time Symmetries 

Let us agree to call internal symmetries those transformations which act 
on the 'internal parameters', such as isospin, hypercharge, baryonic 
number, etc., of a particle. These symmetries must be considered to be 
violated by small or large amounts in order to yield predictions which agree 
with experimental data. That is, the particles of some multiplet differ in 
mass, and this mass splitting is quite considerable in the case of symmetries 
as for instance the unitary symmetry SU(3). 

This feature of symmetries which are not exact already appears in non- 
relativistic quantum mechanics. This is, for example, the case when an 
external electric field (Stark effect) violates the rotation symmetry of some 
Hamiltonian, H0, with a spherically symmetric potential, that is 

H = Ho - eEz (2.1) 

and where the only constant of motion remains the generator Iz of SO(3). 
This symmetry-breaking mechanism was for a long time also the accepted 
picture in elementary particle physics, i.e. the mass splitting was explained 
by the assumption that the symmetry is broken by some interaction 
Hamiltonian. The breaking of the Gell-Mann-Neeman SU(3)-symmetry 
accounts for this. A mass splitting such that SU(3) is broken but yet isospin 
and hypercharge are still conserved, entails the theory to be invariant under 
transformations corresponding to the smaller group 

SU(2), x U(1)r c SU(3) (2.2) 

where SU(2)~ denotes the isospin group, and U(1)y the hypercharge gauge 
group. If one assumes again that a component of Hviolates the fundamental 
symmetry, one has to write, in analogy with (2.1): 

H = H0 + H1 (2.3) 

where Ho is invariant under SU(3). According to (2.2), HI must be charge 
independent and hypercharge conserving, i.e. 

[H1, Ik] = [H,, Y] = 0, k = 1,2, 3 (2.4) 

This picture of broken symmetries is, however, very unsatisfactory. Indeed, 
the 'switching on' of the symmetry-breaking part of the interaction entails 
a change in the mass values and consequently yields inequivalent representa- 
tions of the inhomogeneous Lorentz group {(a,A)}, which are labelled by 
the spin and mass values. This transition certainly constitutes a non-trivial 
mathematical procedure. 

The approach advocated by McGlinn circumvents these problems but 
leads only to a trivial coupling scheme. McGlinn tries to explain the mass 
splitting within multiplets by purely group theoretical methods. The 
physical starting point is that within a multiplet of an internal interaction 
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symmetry group G1 all particles possess the same spin and parity. This 
means that these quantum numbers must be invariant under the internal 
symmetry transformations: 

[Mvv, Xk] = 0, k = 1... dim G (2.5) 

where M w = - M ~ ,  denote the covariant components of the angular 
momentum tensor and Xk the infinitesimal generators of the Lie algebra 
~1 of GI. But the internal quantum numbers may not be translation 
invariant, since the particles in a multiplet have different masses. Therefore 

[P", Xk] # 0 (2.6) 

McGlinn has proved that if (2.5) holds VXk ~ f#l, the semi-simple Lie 
algebra of G~, then all these infinitesimal operators commute with every 
infinitesimal operator of the translations {(a, I)}. If, furthermore, ~(P) 
(the Lie algebra of the inhomogeneous Lorentz-transformations) and f~, 
the internal algebra, are by assumption sub-algebras of some overall 
symmetry Lie algebra ~(G), then this means: 

~(G) = ~(P) �9 ~1 (direct sum), (2.7) 
or equivalently 

G = P • Gl (direct product) (2.7') 

which yields a degenerate mass spectrum and thus invalidates (2.6). 
In view of this negative result of McGlinn one is led to consider symmetry 

schemes which generalize the direct product structure (2.7'). An interesting 
attempt has been put forward by Michel (1965a). Instead of the requirement 
(2.5) or equivalently the statement, that for every g E G~ and every p ~ P, 
gp =pg,  Michel's Lemma assumes the minimum hypothesis to hold, that 
there is at least one Lorentz transformation that commutes with G. 

Lemma 1 [Michel (1965a)] 
Let G be any symmetry group and let the internal symmetry G~ and P 

be analytic subgroups, such that 

P f'l G, = {1} (2.8) 

G =  G x ' P = { g =  glp:  ga ~ Gl, p ~ P} (2.9) 

if there exists at least one Lorentz transformation 

A0 ~ {(0, A)) (2.10) 

that commutes with G~, then G is a semi-direct product of P and G, denoted 
by 

G = P  | G~. (2.11) 

Remark 1 : Otherwise stated: If one infinitesimal generator of a given 
semi-simple Lie group commutes with all generators of the homogeneous 
Lorentz group, then the combined group is necessarily the semi-direct 
product. 
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Remark 2: If one assumes furthermore that G 1 commutes with {(0,A)} 
and if G1 is supposed to be semi-simple, this entails McGlinn's Theorem 
for groups, i.e. formula (2.7'). 

We give now a short proof of Michel's Lemma, which is particularly 
simple [see also von Westenholz (1970a) and Hermann (1966)]: 

Proof of  Michel's Lemma 

It is sufficient to show that P c G be an invariant subgroup in order to 
obtain (2.11). Consider the homogeneous space 

G/P={ga P: gl ~ GI} (2.12) 

and define 

1= {i ~ G: i(gl P) = gl P V gl) (2.13) 

that is, the set (2.13) consists of those elements of G that act trivially on the 
coset space (2.12). The proof then consists in showing that 

(a) 1is an invariant subgroup of G and that, 
(b) P G I .  

Proof of step (a): 

gig-1(gl P)  = i'(gl P)  = gl P i' E L 

since 

gi(g -I gl P)  = g(g-i  gl P)  

Proof of step (b): 

Ao(gl P) = (Ao g~)P = (gl Ao)P = gl(Ao P) = gl P V gl 

Therefore Ao ~ L Since P has no non-trivial invariant subgroup except 
{(a,/)} one finds P f'l I =  P. 

However, semi-direct couplings which constitute a first generalization 
of direct products do not provide non-trivial couplings and therefore do 
not account for mass splitting. This point is discussed in Hegerfeldt & 
Hennig (1967). 

Another attempt to explain mass splitting within a group theoretical 
framework is due to O'Raifeartaigh (1965), Jost (1966) and Segal (1967). 
Their approach consists essentially in showing that if the inhomogeneous 
Lorentz group P is imbedded in a higher symmetry group, then the mass 
operator M 2 = P~.P~ has one and only one discrete eigenvalue. Therefore, 
no mass splitting with discrete masses is possible with finite-dimensional 
symmetry groups within the framework of embeddings. 

In view of these negative results with regard to mass splitting by finite- 
dimensional Lie groups and algebras, attempts have been made in order to 
explain mass splitting by infinite-dimensional algebras or groups. The 
attempt made by the author (1970b) uses suitably parametrized non- 
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denumerable infinite-parameter Lie groups, the so-called 'nuclear' Lie 
groups, which have been studied by Gelfand (1964). Within the framework 
of  such symmetries and the conventional assumptions about the mass 
spectrum one obtains again only trivial couplings. Another approach, 
which is advocated by Formanek (1966), uses real Lie algebras of  de- 
numerable infinite dimension. With sufficiently restrictive assumptions one 
can force mass splitting with such symmetries. However, it has been shown 
by Flato & Sternheimer (1966), that infinite-dimensional Lie groups of 
the type as proposed by Formanek yield the non-unique result that any 
mass formula can be obtained. Indeed, let U(m~, s) (i = 1 ... 8, rn~ denote the 
eight masses of  the baryon octet with spin s = �89 be continuous inequivalent 
unitary representations of  ((a,A)}. Then 

8 
U~(a,A) = @ U(m~,�89 ~ --->~ (2.14) 

1=1 

operates on the separable Hilbert space 5/~ 
Let (~lk/k = 1 ,  2 . . . .  ) be a countable orthonormal basis in the spaces 9~ 

such that: 

: : : (2.15) 
{ ~ s l  ~o82 . . .  ~0S~o} e o~162176 s 

i.e. dim3/Z l = . . .  d i m ~  s = n0, that is ~ l  ~ ~ ,  k, i = 1 ... 8. For  any fixed 
k the vectors ~Olk ... ~8k generate an 8-dimensional Hilbert space $F,' on 
which one can define a unitary representation Adk(SU(3)) of  SU(3). 
Therefore: 

No 

= @ ~ z ,  dim3/g'k 1 = 8 (2.16) 
k=l 

carries the representation 

N0 

U2(SU(3)) = �9 Ad~(SU(3)) (2.17) 
k=l 

of SU(3). Consider now 

U2: SU(3) --> {U/U: ~ - ,  agQ: = G L ( ~ )  (2.18) 

to be an injective mapping of SU(3) into the group of all unitary operators 
acting on ~ .  According to Maissen (1962) this group of  continuous auto- 
morphisms of  a Banach space has the structure of  a Lie group. Since 
evidently { Ul(a, A)) c GL(o~), one has obtained a S U(3) classification and 
a mass splitting by mixing representations of SU(3) and {(a,A)}, both 
contained in the infinite-dimensional Banach-Lie group GL(Jt'~). As this 
construction goes through for any group and any number of  multiplets, 
such pre-assigned masses could originate from any mixing and thus from 
any mass formula. 
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In summary, in the use of infinite-dimensional symmetry groups one 
introduces the following severe difficulties: 

(1) One introduces a multitude of new quantum numbers which have 
not yet been observed. 

(2) One is faced with the aforementioned problem of the non-uniqueness 
of the resulting mass formulae. 

(3) The only invariant scattering operator S is the trivial one, i.e. S = L 
This can be shown within the context of the aforementioned 'nuclear' 
infinite-parameter groups [von Westenholz (1969)], but this result 
should hold for any infinite-parameter group. The reason for this 
is roughly that with an infinite parameter group, one introduces an 
infinite number of conserved commuting quantum numbers. 
Conservation of all these quantities restricts the S-matrix to such an 
extent that no scattering is possible. 

3. Description of a Non-Trivial Coupling Scheme Between 
Internal and Space-Time Symmetries 

As a starting point, we remark that the direct product (2.7') G~ • P+r 
(P+~ stands for the orthochronous inhomogeneous Lorentz group with 
determinant +1) constitutes a special case of a group extension. Group 
extensions have been studied extensively by Eilenberg & MacLane (1947) 
and Eilenberg (1949) in the general case and by Michel (1962, 1965b) for the 
special case of the inhomogeneous Lorentz group. 

The problem of group extensions can be posed as follows: Given two 
groups, K and Q, find all groups E such that 

(a) K <~ E (K is an invariant subgroup of E) (3.1) 

and 

(b) Q = ElK 

E is then called an extension of Q by K. The group extensions of the type 
(3.1) may be written diagrammatically as a short exact sequence 

{e} Y0 K "el=i> E ~q=~ f3 > Q > {e) (3.2) 

where {e}:-  1 denotes the trivial group which consists of the neutral 
$t $~+I 

element alone. Thef~ are homomorphisms. (A sequence... > G~ > ... 
is called exact if Ker (f~+l) = Im(f~) V,.) 

Remark 3: Such a short exact sequence expresses the relationship 
Q = ElK since one has, by considering the general diagrams, 

1 ---~A --> B ---> C - +  1 (3.3) 

f l  
1 > A > B (3.4)  
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means that Ker(fl)  = 1, i.e.f~ is an injection map and thus f l (A)~  A and 

$2 Ya 
B > C > 1 (3.5) 

expresses that fz is surjective, i.e. fz(B) = C (since Ker(f3) = C). Further- 
more we have B/Ker ( f2 )~ f z (B)  and therefore B/A '~ C since I m ( f l ) =  
Ker(f2). 

The direct product (2.7') as well as the semi-direct product (2.11) may, 
in terms of group extensions, be written by means of the following special 

"short exact sequence (3.6) which is said to split: 

1 > G1 > G p+t > 1 (3.6) 
lg 

That is: There exists an injective homomorphism u: P+~ -+ G such that 
~bo u = lv+t represents the identity automorphism ofP+L 

Upon identification of Gl with i(G1) and u ( P J )  with P+t one obtains: 
GI <3 G, p+t is a subgroup of G such that GI .p+t = G and GIf l  P+~ = {e). 
This case corresponds to the semi-direct product (2.11). If, in addition 
p+t <3 G, then this yields (2.7'). 

However, in general, u will not be a homomorphism and the deviation 
from the law of homomorphism is a map 

f :  p+t • p+~ _+ Gl (3.7) 
which has the property 

u(L,) u(L~) =f(L~, L,). u(L,.L~), L = (a, A) ~ e+t (3.8) 

In order to display the existence of non-trivial couplings between space- 
time and internal symmetries one may generalise the relationship (3.6) 
within the framework of cohomology theory (Eilenberg & MacLane, 1947; 
Eilenberg, 1949)as follows: Let 

C O .  8o > C1 81 > . . .  ~.-2> Cn_  1 ~.-1 8. > C" > C "+1 (3.9) 

be a sequence of abelian groups C ~ =  Ck(P+ t, G~) where the homomor- 
phisms are such that 3k+13k = 0. Then we define n-dimensional cocycles 

f E Z " ,  coboundaries b ~B" and cohomology classes ( f ) ~ H "  by the 
following expressions: 

Z" = {fE Cn: ~ f=  e ~ C"+l}: Kernel of 8,: C ~ --> C n+l (3.10) 

B " = { b ~ C " : b = ~ f , f ~ C " - l ) :  ImageofS,_l :  C "-1 --->C" (3.11) 
and 

H" = Z"/B": nth cohomology group (3.12) 

In formula (3.12), two cases must be distinguished: 

H" = 0: The sequence (3.9) is exact, i.e. ImS, = Ker3,+~ (3.13a) 

H" ~ 0: The nth c0homology group measures the lack of 
exactness of the sequence (3.9) (3.13b) 
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In his paper Eilenberg (1947) gives a result connecting group extensions 
and cohomology and which is, expressed by means of (3.2) and (3.13), 
that the group Extg(P+ ~, G1) of extensions of P+ t by GI is isomorphic to the 
second cohomology group H2(p+T,GI). (g denotes the homomorphism 
P+t-+AutG1/IntG~,  refer to the diagram (3.31) in our subsequent 
discussion). G1 is supposed to be an abelian group, but it turns out that 
our scheme is readily generalised for non-abelian groups as shown in 
von Westenholz (1971a). 

Our next task is to construct a non-trivial coupling scheme in which the 
masses of a supermultiplet are related to the extensions Ext (P+1, G1) in such 
a way, that particularly the mass-degeneracy is associated with the direct 
product coupling (2.7'), i.e. (3.6). This can be achieved as follows" Let ggo| 
be the single particle Hilbert space. In the case where particles within a 
multiplet have different masses ml, m2 ... ran, 9r ~174 has necessarily to be 
written as the direct sum of the subspaces ~ l , j  = 1 ... n, 

~ |  ~ oCg~l (3.14) 
./=1 

where 
ggt~ 1 : = g/t~(m~, s) (s denotes the spin of the n particles) (3.15) 

Then, a corollary of Schwartz's Kernel Theorem (Schwartz, 1960) states 
that there exists a bijective correspondence between these Hilbert spaces 
and a family of positive Kernel-distributions in two variables (K~)I .<i .<n 

g ~  +-+ ~(m~, s) (i = 1 . . .  n) (3.16) 

A closer inspection of the corresponding Fourier-transformed positive 
measures 

~ K ~ y  = tx~ = cr 2 - m t  2) (i = 1 . . .  n) (3.17) 

reveals that one is led to distinguish the following two cases: 

ml =rn2 = . . .  = rnn i.e. / ~ r n i j - = O = m i - m  i, (3.18a) 

the measures (3.17) are identical V~ 

rnl-r  . . . .  Cmn i.e. A m ~ j = r n i - r n j ~ O  ( i > j )  (3.18b) 

(3.18a, b) => (Ki - Kj) 99: = K~jcp = ~b ~J 6 Kzj~  c ~'(R4, o~r 
(3.19) 

(~'(R4,~%'~ denotes the space of vector-valued distributions on (R4). 
Thus from (3.18a) and (3.18b) we have the following correspondence 

Kij <--}/~m~ for the n independent Am (3.20) 

The aforementioned classification of the mass differences, equation (3.18), 
may now be related to the cohomology classes of HE(p+ t, GI) by means of 
the wave-distributions (3.19) and the following expression 

= = . [   0(x) a x  = Yt , 

(3.21) 
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where 

f E  Z2(P+ *, GI), 
(L~,L~)eP+ t •  R 4, 

q~o ~ ~t~G~ (representation space of the internal symmetry GI), 

q~o ~ ~ = {q~ ~ C ~[ supp (q~): compact), and 
btJ z ~(q~o)" vector-valued distribution ~ ~ .  (Lr,  s 

As G~ is a group by assumption and since one has, according to (3.7), 

f(Lr, L~)~G1V f~Z2(P+t, G1), (Lr, L ~ p + t  x p + t  

one can define, as Z 2 is a group, a binary operation in Gx as follows: 

f~(L~,L~) + fj(L/,L,') = (f~ + fj)(L~L/,L~L,') =fk(L/',Lj'), (3.22) 

wherefk ~ Z2(P+,GI) and L~, L~...  fixed. 
Now consider the set 

GI':={b(L,,L~):b~B2(P+t, Gm),(L~,L~)~p+t xp+t}  (3.23) 

endowed with the composition law (3.23). Gl' obviously becomes a sub- 
group of G~, since B2(p+ t, Gl) c Z 2 is a group. Then we have the following. 

Lemma 2 
Let g -+ U(g) = U(f(L~,L,)): ; f~  Z2(P+ t, Gx), be the continuous unitary 

representation defined by (3.21). Let (3ffi;(Gi')) be a family of pairwise 
orthogonal cyclic subspaces of 3/d(G~'), given by 

~ j ( a l ' )  = 
fd {~bcL,.L~J (90) = U(b(Lr, Ls)) ~bo ~r.z~) (~P0): ~ biJ E K t j ~  c _~'(R, 4 ~GI) ) 

(3.24) 

with the cyclic vectors ~b~J(~0). The sub-representations UI'(i,j) of U' = U/G1' 
(the restriction of U to the subgroup G~') are supposed to be defined by the 
spaces ~r Then, to any given mass difference Am # 0 corresponds 
one and only one cohomology class (f}. 

The proof of  this Lemma can be achieved in two steps: 

(a) Due to the assumed cyclicity, which obviously entails 

~r = | Je~tJ(Gl') 
l , j  

one has 
K~j~ N K~m~ = {0} (3.25) 

which means the disjointedness of the Kernel-distributions associated 
with different mass differences Arn~ and Amtm. 

(b) Let Kij satisfy (3.20) and let ~h~ j and ~b~ be two elements of K~j~ 
related to f and f '  ~ Z2(P+ *, G1) by the definition (3.21). Then one 
readily shows that 

f ~ f '  mod B2(P+ ~, Gl) holds (3.26) 
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Indeed: 

~[/L,Zs~(~O) = u (U( L,, L~)) ~o = U (bt(L~, L~)) ~b~L,,zg(Cfo) 

~b~L,,L,)(q~O) = U (f'(L~, L,)) ~o = U(bm(Lr, L~)) ~b~L,,z~(90) 
But since 

f j  
r ~O) = U ( f  o( L~, L,) ) d?o 

this yields 
f =  bl +fo  => (3.26) 

f '  = b,~ + A  

However, statement (3.26) does not necessarily exclude the following: 

and ~biJ ~ K i ~  (3.21) 
f ~ f '  mod Bz(P+ t, GI) (3.26') 

~z,. ~ K ~  

thus invalidating Lemma 2. The following Lemma 3 ensures that this 
cannot occur. 

Lemma 3 
I f  f~Z2(P+t ,G1)  corresponds to ~//J~Kij~ and f '  corresponds to 

~b tm ~ K~m9 with the property (3.25) then 

f , ~ f '  rood B2(p+ t, G1) 

The proof of this can be found in yon Westenholz (1971). The converse of  
this Lemma is also true (von Westenholz, 1971), since 

(3.21) ~b, J ~ K i j ~  (3.27) 
f ~ f '  rood B2(p+ t, G1) => ~b TM E Kzm~ 

In conclusion, the relationships (3.25), (3.26) and (3.27), in conjunction 
with Lemma 3, yield Lemma 2. In particular one can show (refer to our 
subsequent Lemma 4) that vanishing mass differences must be associated 
with the cohomology class {0} ~ H2(p j ,G1) .  According to the quoted 
bijective correspondence, one has 

HE(p+ t, G1) +-+ Ext (P+~, G~) (3.28) 

and by virtue of the relationships (3.20) and Lemma 2 one finds 

bijectivc 
dmt~ # 0 < > E~j ~ Ext (P+ ~, G1) (3.29) 

Thus we obtain the following. 

Theorem 1 
Non-trivial couplings of space-time and internal symmetries are given 

by the elements Eij e Ext(P+~, G1). In particular, the trivial direct product- 
coupling G = GI • P+~ (or equivalently diagram (3.6)) is related to the 
mass-differences Ami~ = 0 V i, k. 
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As mentioned already, this Theorem can be generalised for non-abelian 
groups (refer to von Westenholz, 1971a). 

Discussion of Theorem 1 
In connection with this theorem one has to analyse the problem of the 

existence of the assumed extensions. For this purpose, let us select a 
homomorphism 

0: P+~ -+ Out G 1 (3.30) 

such that the following commutative diagram holds: 

G ~ p+t = G/G1 

i 0i (3.31) 
AutG1 ~ OUtGl = AutG1/IntGl 

where AutG~ denotes the group of automorphisms, OutG~ the outer 
automorphisms and IntG1 the inner automorphisms of G~. Then, in terms 
of diagram (3.31) one may reformulate the extension problem of P+~ 
(Michel, 1965c). Given the group G1, P+~ and the homomorphism (3.30), 
find all extensions G of P+ ~, with kernel (GI, 0), such that G operates on its 
invariant subgroup Ga according to diagram (3.31). It may occur that the 
problem of constructing such extensions has no solution for a given 0. 
However, in the case of the unitary symmetries SU(n), which are compact- 
simple Lie groups, there always exists a class of extensions of the in- 
homogeneous Lorentz group P+L These are the so-called central extensions, 
which are characterised by the property Im 0 = 1. Michel (1965) has shown 
that the central extensions of the Lorentz group are those of the form 

E, = G • P+t/Z2(~) (3.32) 

i.e. the quotient of the direct product G1 • -P+r (P+~ stands for the universal 
covering group of P+t) by a two-element group Z2(a). Although all exten- 
sions given by (3.32) are inequivalent, they are isomorphic. Furthermore 
since, by setting ~ =  1, (3.32) yields the direct product-coupling, the 
extensions (3.32) are isomorphic to the latter, and therefore from a physical 
point of view without any interest! Galindo (1967) has been able to show 
that the existence of essential non-central extensions of P+ ~ by some internal 
symmetry group implies that this is necessarily non-semi-simple and non- 
compact. Therefore our mass splitting model admits essential non-central 
extensions provided the internal symmetry satisfies the aforementioned 
restrictions. 

In order to obtain mass formulas, associated with this generalised mass- 
splitting model, one may proceed by introducing a new quantal observable 
A, which we call 'mass-breaking' operator, and which displays the properties 
listed below: 

A ~ | ~f'~" (3.33) 
o 



286 C.V. WESTENHOLZ 

where 

GO ~ : = (D) = {eO/e e C}: the vacuum state 

~ |  c ~ ' ( R  4, j r ' ) :  single particle space 

~ |  -- ~ |  t( ~ i( ~ ~ |  

k 
In terms of A the mass differences are given by 

A m  = (~b(qO, A~b(c?)) - (d?, Aq~), q~ ~ @) a~  | 
0 

(3.34) 

(3.35) 

and A is densely defined in the Fock space 

n=0 

This 'mass-breaking' operator ensures the existence of a mass formula, as 
has been worked out in yon Westenholz (1971 b). The structure of A may be 
specified as follows: 

1. The eigenstates of A are given by the vectorvalued distributions (3.19) 
that is 

. .4~biJ(~)  = dm~b'S(~) (3.36) 

2. By (3.35) A must be constant with respect to a cohomology class for 
some fixed ~ because according to (3.28) and (3.29) one has the bi- 
jective assignment 

Amis ~ 0 ~ { f ) is  ~ H2(p+ ~, G1) (3.37) 

Therefore we write: A = C( f )  (C stands for 'constant' and f denotes 
a representative ~ {f} ~ H2(P+ ~, G~). Thus we have 

,n,o ( 
c:n (P+h61) , X oo (3.38) 

n=0 n=0 ] 

and obviously 
f~ ,~f2 modB2(p+ *, G~) ~ C(fl) ~ C(j~) (3.39) 

In particular one has the following 

Lemma 4 
If  the map (3.38) constitutes a linear operator in the Fock space 

n=0 

then 
C(0) = 0 <:> {f} = {0) ~ H2(p+ *, Ga) (3.40) 

must hold. 
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Proof: Indeed, for f ~ f ' m o d B 2 :  C(f)  = C(f') = C ( f  + b), since C is 
constant on each cohomology class. Moreover, C ( f  + b) = C(f)  + C(b) 
by linearity of C and therefore 

C(b) = 0 (3.41) 

On account of formula (2.6) one has to characterise mass degeneracy by 
equation 

[Pt',Xk]=O.c~A.m~k=O Vi, k.r C(f0) = 0 (2.6') 

Therefore f0 e B2(p+r, Gl), that is f0 ~ 0modB2(p+ t, GI). 

Thus one obtains the following corollary to Lemma 2: 

Corollary: Vanishing mass differences of some multiplet must be 
associated with the cohomology class {0 + B2(p+ r, Gl)}, i.e. 

Amlk = 0 ~ {0} e H2(p+ t, G1) (3.42) 

These results suggest a description of a modified classification scheme for 
elementary particles. In fact, one infers by inspection of the correspondences 
(3.29) and (3.37) that such a symmetry scheme requires an appropriate 
choice of some group G2 such that 

H2(p+ ?, G0 ~ G2 (3.43) 

where the order of G2 must equal (n + 1) (n denotes the number of non- 
vanishing mass differences of some given particle family). 

To summarise: Non-trivial mixings between P+t and some internal 
symmetry must be related to some modified classification scheme, which is 
associated with 

(a) A non-compact and non-semisimple internal symmetry G~ 
(in general non-abelian) 

(b) The symmetryP, which acts on space-time degrees offreedom 
(c) Some 'classification group' G2 (this will in general be a (3.44) 

discrete group, e.g. Z,) and 
(d) A mass-breaking operator 

C(f)  e ~ ( ~ ' , ~ ' )  

Remark 4: By virtue of (3.44a) one can construct mass formulae of the 
type 

m = m0 + Am (3.45) 
where 

Am = r X2,. �9 X,); Xk e ~ (the internal Lie algebra) 

This has been shown in detail in yon Westenholz (1971b). 

Discussion of  the modified classification scheme 
Consider a JP-family of strongly interacting particles (J: spin, P: parity) 

whose masses are ml <m2 . . .  <m, ;  m~ e t 7+ ={p e R 4, p2 ~> 0, p0 ~> 0} 
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(i.e. there exist (n - 1) independent mass differences Amis ~ 0). According 
to our scheme (3.44), we seek some internal symmetry G1 which displays 
the following properties: 

(a) G1 is a separable locally compact, non semi-simple and non- 
abelian symmetry 

(b) The centre of GI, C(G1) is such that H2(p+ *, C(GO) = G2 
(C) G 1 possesses a maximal closed compact subgroup G3, such 

that G3 has an irreducible representation the dimension of 
which equals the order of G2 

(d) The representations of G1 are built up as induced representa- 
tions (Mackey, 1955) from the representations of G3. In 
particular, these are (up to unitary equivalence) identical 
with (3.21) 

(3.45) 

The order of G2 shall be determined by the number of mass differences 
of the particle masses of the particles within some super-multiplet. It equals 
n, if the given multiplet is completely filled and n' > n otherwise (i.e. there 
would be n ' - n  vacant members within the multiplet). We therefore 
distinguish the following two cases: 

(1) 

(2) 

The super-multiplet is completely filled and one can find, in principle, 
a group G1 which exhibits the properties 63a-d). It must be stressed 
at once that the construction of such a group certainly requires a 
considerable mathematical apparatus. We shall attempt in a forth- 
coming paper to carry through such a programme. 
The super-multiplet is not filled, one therefore cannot find any group 
with the properties (3.45a-d) as long as n is the order of Gz. Then one 
would have to assume that the order of Ga equals (n + 1). If, under 
this condition, the group G1 can be determined, one has to conclude 
that there was a member missing in the initial super-multiplet. 
Otherwise one has to assume that the order of G2 is greater than 
(n + 1) and one has to carry on with this procedure until, for a certain 
k, the order of G2 is n' = n + k and permits the complete determination 
of the symmetry G via (3.45a-d). This means that k members were 
missing in the starting multiplet. U(G3) then classifies these n' 
particles. 

At the classificatory level of the conventional models, such as the 'eight- 
fold way', one has no clear indication of what the underlying symmetry 
group actually is (there exists for instance three non-isomorphic rank-two 
groups). Furthermore, once a group has been chosen, it is not clear which 
are the correct assignments of the particles to its irreducible representations. 
In the case of our model (3.45) the right choice of the relevant symmetry 
should emerge from a comparison of the theoretical predictions with 
experiments, since the (n - 1) mass differences Amis should determine GI. 
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The above-mentioned discussion applies to the case of  some set of  
strongly interacting particles. By switching on some weaker interaction, 
one obtains the following interesting result (yon Westenholz, 1971c). 

Theorem 2 

Let E be a Lie group-symmetry which contains the inhomogeneous 
Lorentz group p+t  and some internal symmetry group G (dimG = n) as 
analytic subgroups. G is supposed to be an exact symmetry for some strong 
interaction model, i.e. E = G • p+t.  Let the spectrum of the 'mass-breaking' 
operator C( f )  and of the energy momentum vector P be in {0} U I 7+. Then 
the breakdown of the symmetry G may be characterised by the following 
equivalent statements: 

(a) The trivial direct product-coupling E = G • p+t  is carried over in 
nontrivial mixings E~ = G _l_~ P+* (_[_~ symbolises these mixings). 

(b) There remains invariance of the theory only under transformations 
corresponding to a group G~ of smaller dimension (dim G1 = n~ > n). 

(c) The mass degeneracy is (partly) removed. 

The proof  of  this Theorem can be found in yon Westenholz (1971c). This 
Theorem constitutes actually a rigorous characterisation of  broken 
symmetries as described by relationship (2.2) in our Section 2. 

References:  

Eilenberg and MacLane (1947). Annals o f  Mathematics, 48, 326. 
Eilenberg (1949). Bulletin of  the American Mathematical Society, 55, 3. 
Flato and Sternheimer (1966). Journal of  Mathematics and Physics, 7, 1932. 
Formanek (1966). Czechoslovak Journal of  Physics, B16, 1. 
Galindo (1967). Journal of  Mathematics and Physics, 8. 
Gelfand (1964). Distributionen, Bad. IV, VEB Verlag der Wissensch. Berlin. 
Hegerfeldt and Hennig (1967). Preprint, Universitiit Marburg. 
Hermann (1966). Lie Groups for Physicists. Benjamin, New York. 
Jost (1966). Helvetica Physica Acta, 39, 369. 
Mackey (1955). The Theory of  Group Representations. University of Chicago. 
Maissen (1962). Acta mathematica, 108, 229. 
Michel (1962). Istanbul Summer School for Theoretical Physics, Ankara. 
Michel (1965a). Physical Review, 137, B405. 
Michel (1965b). Brandeis Summer School. Gordon and Breach. 
Michel (1965c). Coral Gables Conferences, University of Miami. 
McGlinn (1964). Physical Review Letters, 12, 467. 
O'Raifeartaigh (1965). Physical Review, 139 B1052. 
Schwartz (I 960). Technical Report No. 7, Contribution No. 222, Office of Naval Research. 
Segal (1967). Journal Functional Analysis, 1, 1. 
yon Westenholz (1969). Actaphysica austriaca, 30, 260. 
von Westenholz (1970a). Vth Annual Seminar of Theoretical Physics, Pretoria, M1. 
von Westenholz (1970b). Acta physica Austriaca, 31, 54. 
von Westenholz (1971a). Annales de l'Institut Henri Poincard (I), 14, 4. 
yon Westenholz (1971b). Annales de l'Institut Henri Poincard (II), 14, 4. 
von Westenholz (1971c). Acta Physics Austriaca, 32, 254. 


